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SUMMARY

There has been a renewed interest in the Greenwood statistic for goodness of fit and
its percentage points. See Burrows (1979), Currie (1981) and Stephens (1981). This
statistic, which is based on the sum of squares of the sample spacings, is known to be
locally most powerful among all tests based symmetrically on the simple one-step
spacings. This paper discusses some generalizations of this statistic based on higher-
order or m-step spacings and shows them to be asymptotically more efficient. It is
also shown that the limiting efficiency increases further if the test is based on over-
lapping m-step spacings as opposed to the disjoint (or non-overlapping) m-step
spacings.

Keywords: GOODNESS OF FIT; SAMPLE SPACINGS; HIGHER-ORDER SPACINGS; GREENWOOD’S
STATISTIC; ASYMPTOTIC EFFICIENCY

1. INTRODUCTION
Let X;,...,X,-1 be independently and identically distributed (iid) with a given continuous
cumulative distribution function (cdf) F. The goodness-of-fit problem is to test if this df is equal
to a specified one. A simple probability integral transformation on the random variables reduces
the support of F to [0, 1] and permits us to equate the specified df to the uniform distribution
on [0, 1]. Thus from now on we shall assume that this reduction has been effected and that the
null hypothesis of interest is

Hy: F(x)=x, 0<x<1. (1.1)

Among the many procedures available are those based on sample spacings. See, for instance, Pyke
(1965) and references contained therein. Let X; <...<X,_; be the order statistics. The simple
or one-step spacings are defined by

D;=(Xj+y —X{), i=0,...,n—1, (1.2)

where we put Xo =0 and X,, = 1. It may be noted that the order statistics as well as the spacings
should have an extra subscript » to denote the sample size but it will be suppressed throughout
for notational simplicity. Most common among test statistics based on spacings are n ' Z|D; —n7! |,
n~' Zlog(nD;)and n ™' T (nD;)" forr =—4,r #0, 1. The last statistic for 7 = 2, namely,

n-1

Gip=n Y, (nD)? (1.3)
0

was proposed by Greenwood (1946) and will be called throughout the Greenwood statistic. The
asymptotic normality of these statistics and in fact, more generally, that of statistics of the form
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n-1

=p-1 2 h(nD;), A (1.4)
i=0

where A(+) is a function that satisfies some mild regularity conditions, has been established for
instance in Rao and Sethuraman (1975). The exact distributions are often more difficult and
therefore tables of percentage points are hard to construct. It is this latter aspect of the Green-
wood statistic Gy, that Burrows (1979), Currie (1981) and Stephens (1981) address.

The importance attached to Gjp, is somewhat justified in view of the result established in
Sethuraman and Rao (1970) that among all symmetric statistics of the form Ty, in (1.4), the
Greenwood statistic Gy, has the maximum Asymptotic Relative Efficiency (ARE). See also
Lemma 2.4. However, recent results on the asymptotic theory of spacing statistics suggest that
there are asymptotically more efficient procedures than the Greenwood statistic if one takes into
account test statistics based on higher-order spacings. Two types of higher-order or m-step spacings
(m > 1, fixed) should be distinguished. The overlapping m-step spacings are defined by

D™ =X, . -X/, i=0,1,...,n-1. (1.5)

The non-overlapping or disjoint m-step spacings, on the other hand, are defined by

! . n
DI = Xieryem ~Xims 1=0,1,.., [;,]—1, (1.6)

where [n/m] denotes the integer part of (n/m). Since we will only be concerned with asymptotic
properties, it is convenient to assume, without loss of generality, that » =N +m so that (n/m) =N
is an integer in (1.6) and also to define circularly X, = 1 + Xy_, in (1.5). Del Pino (1979) studied
symmetric test statistics based on disjoint m-spacings defined in (1.6) and using methods
developed in Rao and Sethuraman (1975), establishes the asymptotic normality of statistics of the
form

N-1

Ton(m)=N" Y h(nDI™). 1.7)
i=0

He also shows that a statistic analogous to Greenwood’s, namely,

N-1
Gan(m)=N" Y, (nD{T) Y’ (1.8)

iem
i=0

based on the sum of squares of these disjoint m-spacings has the maximum ARE among statistics
of the form T,,. Also the statistic G,,(m) is asymptotically more efficient than Greenwood’s
statistic Gy,, and the disparity grows with mcreasmg m, the length of the step (cf. Table 1).
Cressie (1976) studied the statistic Z log (nD ™) based on the overlapping m-spacings.

Kuo and Rao (1981) consider again the general class of symmetric statistics based on over-
lapping m-spacings

n-1

Tsn(m)=n" Y h(nD{™) (1.9)
i=0

and establish their asymptotic normality for a wide class of functions #(+). They also investigate
the ARE’s of such statistics and show again that a statistic analogous to Greenwood’s, namely
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n-1
Ga(m)=n™ ¥ (nD{™)? (1.10)
i=0

is asymptotically the most efficient and that this efficiency again increases with m.

In Section 2, we quote some relevant results on the classes of statistics Ty,, T2, and T3,
and give a simple proof why Greenwood-type statistics G;,, G2, and G3, are best in the
respective categories. We conclude Section 2 with a short table of efficacies of G;,, G3,(m) and
G3y,(m) for different m and questions about choice of m.

In Section 3, the advantage of considering statistics based on overlapping m-spacings, as
compared to those based on disjoint m-spacings, is investigated.

2. SOME RELEVANT RESULTS

Although the exact calculation of power, when it can be done, is preferable for small sample
comparisons of two competing tests, it is not often that this can be done in practice. In such a
case, one resorts to asymptotic measures of test efficiency as an indication of the relative local
powers, i.e. for alternatives close to the null hypothesis. An introduction to various measures of
asymptotic efficiencies of tests, including Pitman’s Asymptotic Relative Efficiency (ARE), can
be found for instance in C. R. Rao (1973, pp. 464-470). In general, since the power at any fixed
alternative, approaches one as the sample size increases to o for any reasonable test (implying
consistency), such asymptotic comparisons can only be made for an appropriate sequence of
alternatives which converge to the null hypothesis as # = 0. In this situation, the ARE of one test
with respect to another, may be interpreted as the inverse ratio of sample sizes needed by the tests
to have the same power at such a sequence of alternatives (cf. Rao, 1973, p. 469). For statistics
based symmetrically on spacings, namely Ty,, T3, and Tj,, the appropriate sequence of
alternatives is given by the cdf (cf. Rao and Sethuraman, 1975; Del Pino, 1979; Kuo and Rao,
1981)

Ly(x)

0<x<I, (2.1)

where L,(0)=L,(1)=0. We assume that L,(x) is continuously differentiable with derivative
1,(x). Let L(x) be a twice continuously differentiable function defined on [0, 1] with the first
and second derivatives denoted by I(x) and I'(x) respectively such that L,(x) converges to L(x)
uniformly on [0, 1], so that

sup | ,(x)— I(x) | =o(1). 2.2)
0<x<1
We now quote three results about the asymptotic distributions of the general statistics Ty,, T2,
and T3, respectively, when the observations Xj, ..., X,_; come from the alternative cdf (2.1).
These results give the limit distributions under the null hypothesis by putting L,(x) = L(x) =0,
0 <x <1, and also allow us to compute the ARE.s of such statistics.
Let Zy,Zy,...,Z,_1 be a sequence of iid exp (1) random variables with pdf e~# for z > 0.
Define the partial sums

Sk=Zot+...vZx_y, k=1,2,...,n (2.3)
Define also the rotating partial sums (of m terms at a time)
m-1
S =% Ziy, k=0,1,...,n-1 (2.4
j=0

with the convenient notation Z; =Z;_, for j>n. Finally let Z stand as a generic symbol for
exp (1) random variable and S for a Gamma (m, 1) random variable with pdf
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sm-le=s['m  fors>0. (2.5)

Rao and Sethuraman (1970, 1975) express statistics of the form Ty, in (1.4) as a functional
of the empirical spacings process and derive their limit distributions. Using a similar approach
Del Pino (1979) obtains the limiting distributions of statistics of the form T, in (1.7). Kuo
and Rao (1981), using a more direct approach based on Taylor expansions, study statistics of
the form T3, defined in (1.9). We now quote the main results of each of these papers in terms
of the present terminology and notations. The detailed regularity conditions on the class of
functions /() are given in the respective papers and are omitted here. We are content to remark
that the classes are quite broad and include all the statistics we mentioned in Section 1.

Theorem 2.1 (Sethuraman and Rao, 1970, pp. 405-416, Theorem 3). Under the alternatives
(2.1), the statistic Ty, in (1.4), with h(*) satisfying some regularity conditions (ibid.), has the
asymptotic distribution

n-1

VT ~EWZ)=n"t S (WD)~ END] -S> N, ob),
i=0
where
1
My = % ( S 1% (u) du) - cov (W(2),(Z-2)?), (2.6)
and 0
02 = Var (W(Z)) — cov*(h(Z), Z) 2.7

d
and - denotes convergence in distribution. O

Theorem 2.2 (Del Pino, 1979). Under the alternatives (2.1), the statistic T, in (1.7) with
h(+) satisfying some regularity conditions (ibid.), has the asymptotic distribution

N-1
VN(T3n = ER(S)=N"3 % [h(nD™ )~ ER(S)] > Nz, o),
i=0
wheie
1
Uz = < S 1% (u) du> * cov (A(S), (S—m —1)?) /2\/m (2.8)
0
and
03 = var (W(S)) — cov? (h(S), S)/m. O (2.9)
Finally,

Theorem 2.3 (Kuo and Rao, 1981). Under the alternatives (2.1), the statistic T3, in (1.9)
with A( ) satisfying some regularity conditions (ibid.), has the asymptotic distribution

n-1
Vn(Tsn ~ER(S)=n"F § [A(DI™) ~ F(S)] > N(us, o3),
i=0

where
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1

Uz = ( g lz(u)du) * cov (h(S), (S —m — 1)?) /2 (2.10)
0
and
m-1
B= X cov(a(SI), h(SI™)) ~(cov (h(S),S))*. O (2.11)
-m+1

Clearly, the distribution under the null hypothesis (1.1) is obtained by putting u)=0,
0<u <1 in any of these theorems. This reduces the mean of the normalized statistics to zero
with the variance remaining the same. But the main reason for considering distributions under
the alternatives (2.1) is that this allows computation of ARE’s, which we now describe very
briefly.

Let u(h) and o® (4) denote the asymptotic mean and variance of the test statistic T},(%) based
on the function s(+) under the sequence of alternatives (2.1). Here it is assumed that the test
statistic T, (k) has been normalized to have asymptotic mean zero and finite variance under the
null hypothesis. Then under certain standard regularity conditions, which include a condition on
the nature of alternatives and asymptotic no-mal distribution of T}, (%) under these alternatives,
the Pitman asymptotic relative efficiency of T,(h;) with respect to T,(h;), denoted by
ARE (h;, hy), can be calculated by

2 2 2 2
W (h1)> / <u (h2) )
ARE (hy,hy) = _ 2.12
(h1,h2) <3T-—(h1) 7 ) (2.12)
(see, for example, Fraser, 1957). The value e* (k) = u® (h)/0* (h) is called the “efficacy”. The test
with maximum efficacy has asymptotically maximum local power. To find such a test, against the
specific alternatives (2.1), we need to find a function A(+) which maximizes e(h). The following

lemma shows that in all these cases, the locally optimal test is obtained by taking A(x) = x2, i.e.
the Greenwood-type statistic based on the sum of squares of spacings.

Lemma 2.4. The value of e;(h)=ufh)/o,(h) for any of the three classes of statistics
(i=1,2,3) is maximized by taking the function A(x)=x?, i.e. among the classes of statistics
T1n, T2 and T3, the locally optimal test is provided by Gy,, G,, and Gz, respectively (cf.
equations (1.3), (1.8) and (1.10)).

Proof. Within any specific class, say i, consider all non-degenerate statistics (i.e. with non-zero
variance) T;, = T;,(h) obtained by varying over all A(+), which satisfy the regularity conditions.
Since the efficacy is unaffected by a linear transformation of the statistic, we may assume without
any loss of generality that o7 (#) = 1. Thus the problem of finding a 4(+) for which the maximum
efficacy is obtained is the same as finding a 4( +) which maximizes the numerator in ¢;(%), namely
(). Thus by the Cauchy-Schwartz inequality,

N

1
ex(W)= i (h) = (S l’(u)du) + cov (D)), @ ~2)%)
0

1

< % ( S lz(u) du ) e (var (h(Z)))I/2 « (var (Z-2)? )1/2' (2.14)
0

Similarly,
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1
er (W)= s () = —— (5 zz(h)du) + cov (H(S), (S —m— 1)?)

2/m
0
1 1
<— ( g 12(h)du> - (var (h(S)Y/? - (var (S—m —1)>)!/2  (2.15)
2v/m .

and

1
e3(h) = us(h) =% ( g lz(u)du) * cov (i(S), (S —m = 1)*)
0

1

<% <S l’(u)du> + (var (A(S)))}/? + (var (S —m —1))!/2. (2.16)
0

These inequalities become equalities if and only if A(x)=a(x—2)2+b in (2.14) and
h(x) =a(x —m —1)*> +b in (2.15) and (2.16) for some real numbers @ # 0 and b. Since the sum
over the x term results in a constant, the optimal statistic is equivalent to the one obtained by
putting (x) =x2. This gives (1.3), (1.8) and (1.10) as the asymptotically locally most powerful
tests in the respective classes T1,, T2,(m) and T3,(m). O

Specializing Theorems 2.1, 2.2 and 2.3 to the case A(x)=x?, one gets the asymptotic
distributions of the three Greenwood-type statistics G1,, G2,(m) and Gj3,(m). The asymptotic
means and variances are presented in Table 1 below. Also since [f5 /2(u)du]* enters as a multi-
plicative factor in the definition of efficacy in (2.13), we tabulate “modified efficacies”, namely
(b /0® (f§1% () du)*].

It is clear that the efficacies of Gy, and Gj, increase with m, the length of the step and exceed
that of the Greenwood statistic Gy, which corresponds to m = 1. Table 2 gives some numerical
values of modified efficacies of G5, and G3, as a function of m.

From this it follows that both G,, corresponding to the non-overlapping spacings and G3,
corresponding to the overlapping spacings are clearly superior to the Greenwood statistic and this
superiority increases with the length of the step m. The optimal choice of m is an open question
at this point and it appears one should allpow m to increase unboundedly with #. This is presently
under investigation. For moderate sample sizes Monte Carlo studies might provide an answer.
The superiority of G3,(m) over G,,(m) for any given m is further investigated in some generality
in the next section.
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TABLE 2
m Gin Gan(m) G3p(m)
1 1.000 1.000 1.000
2 - 2.250 3.240
3 — 4.000 6.610
4 - 6.250 11.111
5 - 9.000 16.736
10 - 30.250 61.732
20 — 110.250 236.114
50 — 650.250 1434.213

3. SUPERIORITY OF THE CLASS OF STATISTICS BASED ON OVERLAPPING
SPACINGS
Recall the definitions (1.5) and (1.6) of the overlapping m-spacings and the non-overlapping
m-spacings. The latter is a subset of the former with the ith disjoint m-spacing corresponding
to the (i*m)th overlapping m-spacing. In this section, we compare the ARE of statistics of the
form T3, in (1.9) with the corresponding statistic 75, in (1.7), i.e. for the same function A(*).
As may be expected, it is shown that overlapping provides higher efficacies (see Theorem 3.2).
We shall assume as before that N = (n/m) is an integer without any loss of generality and define

N-1
Vin=N" Y haD™ ) j=0,1,..,m~1. G.1)

] iem+j
i=0

This V;, , is based on non-overlapping or disjoint m-spacings starting from the jth order statistic
and Vg, ,, = Ty, defined in (1.7). On the other hand, T3, in (1.9) is based on all the overlapping
m-spacings and one may write

T3p,=m™ Y Vj, (3.2)

Thus T3, is a simple average of the {V,,,,, j=0,...,m—1} each of which are based on disjoint
m-spacings. Clearly {V,’ n) are exchangeable random variables and from Theorem 2.2,

Vi, ,,——d> Vj, say which has an N(u,, 03) distribution under the alternatives (2.1). The proof
of the present Theorem 2.3 as given in Kuo and Rao (1981) can be easily adapted to establish
the asymptotic normality of the weighted average Ej";:)la,ﬂV,',,, (instead of the unweighted
average T3, in (3.2)) for any set of real numbers (4o, . - ., @y, -1)- This implies the limiting multi-
variate normality of {V,,,,, j=0,...,m—1}. Denoting an m-variate normal distribution by

Ny, (¢, +), we thus have the following
Theorem 3.1. If the assumptions on L,(x) and A(+) hold as in Theorem 2.3, then under the

close alternatives (2.1), the vector W, ={Vo, ,,. .., Vin-1,n} converges in distribution te the
vector W={Vy, ..., Vy_1 }, say which has an N,,(u, 7) distribution with
/J'=(IJ'2’ ce “2), (33)

with u, as defined in (2.8) and covariance matrix
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! To T1 e Tm-2 Tm-1
Tm-1 To o e Tm-3 Tm-2
(3.4)
T1 T2 . Tm-~1 To
with 79 = 0% defined in (2.9) and
77.= cov (R(SE™), h(S™) + h(sf”m_; ) = cov? (A(S), S)/m. O (3.5)

Observe that Theorem 2.2 is a special case of this and refers to the marginal distribution of
Vo,n = T2, Setting I=0 in the above result, specifically in the component u, of u, gives the
asymptotic null distribution of W, which is N, (0, 7). Since the covariance matrix 7= ((7;))
has the property that 7;; = 7 if |j —i | = k, it is called a “circulant”. The following theorem shows
that the optimal (locally most powerful) test among all possible linear combinations of { Vi, nt
is obtained by taking their simple average, i.e. T'3,, and that it is always more efficient than tests
based only on Ty, = Vg ,.

Theorem 3.2. Let {V; ,} and {T3,} be as defined in (3.1) and (3.2) (or (1.9)) respectively.
Among all possible test statistics which are linear combinations of { Vin }, the maximum efficacy

is attained for T3, =m ™ E/"'= '(1) V;, n- The ARE of the overlapping m-spacing test T3, with respect

to the corresponding disjoint m-spacing test T, = Vo, , is (m7g /)31"’:’(1) 'r,)2 which exceeds 1 for
any h(+) except in the trivial case m = 1, in which case they coincide.

Proof. From Theorem 3.1, for any real vector b’ = (b, . .., by 1), the linear combination
b'W, has asymptotically an N(b'u, b'rb) distribution. The problem is to find a vector b for which
the efficacy e, = (b'w)?/(b'th) is a maximum. This is an easy problem (cf. Rao, 1973, p. 60) if
the covariance matrix 7 is positive definite. If not, for some ¢ >0 define the positive definite
matrix 7¢ = 7 + €l,, where I,,, is the (m X m) identity matrix. Let

®'w?
e(e) = sup ep(€) = sup .
b b (b'Teb)
This supremum is attained when b =b* = \(7;' 1) for some real number A # 0 (cf. Rao, 1973,
p. 60). Since the inverse of a circulant matrix is a circulant (see Good, 1950) and u has all its
component equal, it follows that the maximizing vector b* = N7, 141 has all equal components,
say

(3.6)

Then

m-1
e(e) = (0w /(0™'1cb™) = (muz )? / ( ) r,+e). (3.7)
j=o

Since 2,"‘:'(1) 7; in the denominator corresponds to the variance of T,, it is non-zero except for

the degenerate case, i.e. when A(x) = ¢, x + ¢, for some constants ¢; and ¢,. Thus we may let €
tend to zero so that the efficacy of T, is given by
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m-1
e=supep = lim e(e)= (muy)? /( Yy Tj). (3.8)
b €e—~>0

j=0
Finally to compare the ARE’s of T3, and T5,,, we have from Theorem 2.2 and (3.8)

2 2 2 2 2
mu; [ M2 mTo
ARE(T:;,,, Tzn) = —_— - <—'> = .
m-1 To m-1

X X

=0 j=0

This ratio s, of course, equal to 1 if m = 1, in which case the statistics T3, and T, coincide and are
the same as Ty,. If m 2 2, notice that by Cauchy-Schwartz inequality

7;=cov(Vp, V) <var « Vo =7¢ foranyj=1,...,m—1.

Equality holds, i.e. 7;= 7o if and only if V; =X-V, with probability one for some real number
A. But in view of the fact that V; and V), have identical distributions, this implies A = 1. This
is impossible except in the degenerate case, thus proving that T3, is strictly superior to T,
for any choice of £(+). O

4. CONCLUSIONS

For any choice of the function A#(+) and size of the step m, Theorem 3.2 indicates that the
test statistic 73,(m) which makes use of overlapping spacings is superior to the corresponding
test statistic 75,(m) which uses only the disjoint spacings. In particular the Greenwood-type
statistic G3,(m) given in (1.10) is preferable to G,,(m) in (1.8) and both of them have much
higher asymptotic relative efficiencies than the Greenwood statistic Gy,. From Table 1, the
ARE of G3, relative to G, for any fixed m is seen to be 9/(2 + (1/m))? which is approximately
9/4 for large m. One can reduce the required sample size by approximately 4/9 for comparable
power by using G3, instead of G,,. Thus even in moderately large samples, there is every reason
to prefer G3, over G, or Gy,. Even though the limiting theory suggests larger m values are
always better, the choice of m is an important open question. One could choose m as high as
the integer part of n/2 (beyond which it corresponds to the complement of a smaller than
m-step spacing) although for practical applications, a rule of thumb about the order of m in
relation to n, may be obtained from Monte Carlo studies. These and some related problems are
presently under investigation.
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